

Leibniz Institute for high performance microelectronics

Open PDK with Open EDA Tools -Challenges and Future needs

René Scholz - Group Leader / Research & Prototyping Service IHP – Leibniz Institute for High Performance Microelectronics E-Mail: scholz@ihp-microelectronics.com

IHP at a Glance

Positioning

- IHP is the European research and innovation centre for silicon-based systems, ultrahighfrequency circuits and technologies
- The research focuses on socially relevant topics such as communication, mobility, health & environment, industry & agriculture, sustainability and security.
- Unique selling point of a 200mm pilot line for state-of-the-art BiCMOS technologies, operated under industry-like conditions, 24/7, for the provision of prototypes and low-volume production runs.
- Qualified technological platform with direct access for science and industry

"We create foundations and prototype applications based on future silicon-based technologies and systems for a digitalised and networked world as well as for the sustainable preservation of our natural living conditions."

IHP

2

SiGe-HBT

CMOS node

Active devices

 f_t / f_{max}

W_{Emitter}

HBT BV_{CEO}

Varactors

Resistors

MIM Caps

Metallization

130nm SiGe BiCMOS Technologies for RF Applications

Al: 2 (3µm

IHP

Al: 2 (3µm)

SG13S	SG13G2	SG13G3Cu	Target are high end developments
250 / 340 GHz	350 / 450 GHz	470 / 650 GHz	for RF & Terahertz frequencies,
			cryo and space applications
170 nm	130 nm	110 nm	
1.7 V	1.6 V	1.5 V	-• SG13S & SG13G2 are qualified
130 nm			and ready for Low Volume of high
Schottky diodes, Antenna diodes, PN diodes, ESD			end products SG13G2 technology
NMOS Varactor			was selected for the development
Poly-Si, Thin Film		Poly-Si	of an open PDK
1.5 fF / μm² (Al) 2.1 fF / μm² (Cu)	1.5 fF / μm² (Al) 2.1 fF / μm² (Cu)	2.1 fF / μm²	-• SG13G3Cu is early access -
7 Layers AL incl. 2 & 3 μm layers or *Cu: 4 + 2 (3μm)	7 Layers AL incl. 2 & 3 μm layers or *Cu: 4 + 2 (3μm)	*Cu: 4 + 2 (3μm) Al: 2 (3μm	qualification scheduled 2025

*Cu BEOL from X FAB

3

Motivation for IHP's open Process Design Kit (PDK) initiative

- Simplify access to education materials for chip designers and to attract young people to get into chip design process
- Provide low threshold (cost/technological) access to technology & PDK for chip designer, academic projects
- **OBE a pioneer** in demonstrating the possibilities of open source EDA software
- -• To convince commercial fabs to support the open source approach
- Support chip design possibilities for advance IC design projects by StartUp, SMEs and commercial companies

Open EDA cycle to push open hardware development

Enable open and worldwide collaboration on development of the PDK, co-development of tools and PDK features

Analog/RF Open Source Design Flow / Challenges

Tape-

Open EDA Tools often handled by individual enthusiasts or small groups

Lack of a complete open source analog design flow

Open IC designs needed to improve Open EDA tools and foster its developments

•• Open Process Design Kits are not available in EU

No European concept for sustainable maintenance of the Open PDKs and Open EDA tools

6

-• We need a European Open Source Silicon Ecosystem

- Is a European Open Silicon Hub possible?
- Will there be projects targeting open source to get initial funding?
- Can a European Foundation or associated fund support this?

-• IHP Open130-G2 (16ME0852) https://www.elektronikforschung.de/projekte/ihp-open130-g2 https://www.elektronikforschung.de/projekte/fmd-gnc -• Design tools for sovereign chip development with open source

Thanks to open source community SemiMod, ETH Zurich, Uni Linz, ChipFlow,

FMD-QNC (16ME0831)

(DE:Sign) – starting now May 2024

Staf Verhaegen (PDKMaster), M. Koefferlein (klayout), D. Warning, H. Vogt (ngspice), M. Brinson (Qucs-S), and many more ...

Thanks to different public founded German projects:

-• VE-HEP (16KIS1339K)

https://elektronikforschung.de/projekte/ve-hep-1

8

SPONSORED BY THE

Federal Ministry

of Education and Research